skip to main content


Search for: All records

Creators/Authors contains: "Omar, Ahmad K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An active droplet system, programmed to repeatedly move autonomously at a specific velocity in a well‐defined direction, is demonstrated. Coulombic energy is stored in oversaturated interfacial assemblies of charged nanoparticle‐surfactants by an applied DC electric field and can be released on demand. Spontaneous emulsification is suppressed by an increase in the stiffness of the oversaturated assemblies. Rapidly removing the field releases the stored energy in an explosive event that propels the droplet, where thousands of charged microdroplets are ballistically ejected from the surface of the parent droplet. The ejection is made directional by a symmetry breaking of the interfacial assembly, and the combined interaction force of the microdroplet plume on one side of the droplet propels the droplet distances tens of times its size, making the droplet active. The propulsion is autonomous, repeatable, and agnostic to the chemical composition of the nanoparticles. The symmetry‐breaking in the nanoparticle assembly controls the microdroplet velocity and direction of propulsion. This mechanism of droplet propulsion will advance soft micro‐robotics, establishes a new type of active matter, and introduces new vehicles for compartmentalized delivery. 
    more » « less
    Free, publicly-accessible full text available February 28, 2025
  2. In striking contrast to equilibrium systems, inertia can profoundly alter the structure of active systems. Here, we demonstrate that driven systems can exhibit effective equilibrium-like states with increasing particle inertia, despite rigorously violating the fluctuation–dissipation theorem. Increasing inertia progressively eliminates motility-induced phase separation and restores equilibrium crystallization for active Brownian spheres. This effect appears to be general for a wide class of active systems, including those driven by deterministic time-dependent external fields, whose nonequilibrium patterns ultimately disappear with increasing inertia. The path to this effective equilibrium limit can be complex, with finite inertia sometimes acting to accentuate nonequilibrium transitions. The restoration of near equilibrium statistics can be understood through the conversion of active momentum sources to passive-like stresses. Unlike truly equilibrium systems, the effective temperature is now density dependent, the only remnant of the nonequilibrium dynamics. This density-dependent temperature can in principle introduce departures from equilibrium expectations, particularly in response to strong gradients. Our results provide additional insight into the effective temperature ansatz while revealing a mechanism to tune nonequilibrium phase transitions.

     
    more » « less
  3. Abstract

    Spontaneous emulsification, resulting from the assembly and accumulation of surfactants at liquid–liquid interfaces, is an interfacial instability where microdroplets are generated and diffusively spread from the interface until complete emulsification. Here, it is shown that an external magnetic field can modulate the assembly of paramagnetic nanoparticle surfactants (NPSs) at liquid–liquid interfaces to trigger an oversaturation in the areal density of the NPSs at the interface, as evidenced by a marked reduction in the interfacial tension, γ, and corroborated with a magnetostatic continuum theory. Despite the significant reduction in γ, the presence of the magnetic field does not cause stable interfaces to become unstable. Upon rapid removal of the field, however, an explosive ejection of a plume of microdroplets from the surface occurs, a dynamical interfacial instability which is termed explosive emulsification. This explosive event rapidly reduces the areal density of the NPSs to its pre‐field level, stabilizing the interface. The ability to externally suppress or trigger the explosive emulsification and controlled generation of tens of thousands of microdroplets, uncovers an efficient energy storage and release process, that has potential applications for controlled and directed delivery of chemicals and remotely controlled soft microrobots, taking advantage of the ferromagnetic nature of the microdroplets.

     
    more » « less